

+64 7 858 2000 mail@hill-labs.co.nz W www.hill-laboratories.com

T 0508 HILL LAB (44 555 22)

Certificate of Analysis

Page 1 of 2

SPv1

Client: 4SIGHT Consulting Limited

Contact: Oliver Bone

C/- 4SIGHT Consulting Limited

PO Box 402053 Tutukaka 0153

2259956 Lab No: **Date Received:** 17-Oct-2019 **Date Reported:** 24-Oct-2019

Quote No: 83367 **Order No:** AA1146

Client Reference: AA1146 - Matawhero Logyard [Dunstan Rd]

Submitted By: Oliver Bone

Sample Type: Aqueous						
S	ample Name:	MLYGW 01 15-Oct-2019 11:40 am	MLYGW 02 15-Oct-2019 11:50 am	MLY STD01 15-Oct-2019 10:35 am		
	Lab Number:	2259956.1	2259956.2	2259956.3		
Individual Tests						
рН	pH Units	-	-	7.4	-	-
Electrical Conductivity (EC)	mS/m	-	-	51.4	-	-
Total Nitrogen	g/m³	0.33	0.21	2.5	-	-
Nitrate-N + Nitrite-N	g/m³	0.056	0.043	0.003	-	-
Total Kjeldahl Nitrogen (TKN)	g/m³	0.28	0.17	2.5	-	-
Total Petroleum Hydrocarbons i	n Water					
C7 - C9	g/m³	< 0.06	< 0.06	< 0.06	-	-
C10 - C14	g/m³	< 0.2	< 0.2	< 0.2	-	-
C15 - C36	g/m³	< 0.4	< 0.4	< 0.4	-	-
Total hydrocarbons (C7 - C36)	g/m³	< 0.7	< 0.7	< 0.7	-	-

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Total Petroleum Hydrocarbons in Water	Solvent extraction, GC-FID analysis. Headspace GC-MS analysis for C7-C9 carbon band. In-house based UEPA 8015, 8260 & 5021 / MfE Petroleum Industry Guidelines.	0.06 - 0.7 g/m ³	1-3
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-3
pН	pH meter. APHA 4500-H* B 23 rd ed. 2017. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	3
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B 23 rd ed. 2017.	0.1 mS/m	3
Total Nitrogen	Calculation: TKN + Nitrate-N + Nitrite-N. Please note: The Default Detection Limit of 0.05 g/m³ is only attainable when the TKN has been determined using a trace method utilising duplicate analyses. In cases where the Detection Limit for TKN is 0.10 g/m³, the Default Detection Limit for Total Nitrogen will be 0.11 g/m³.	0.05 g/m³	1-3
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ · I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-3
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, phenol/hypochlorite colorimetry. Discrete Analyser. APHA 4500- N_{org} D (modified) 4500 NH $_3$ F (modified) 23 rd ed. 2017.	0.10 g/m ³	1-3

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Carole Rodgers-Carroll BA, NZCS Client Services Manager - Environmental

Private Bag 3205

T 0508 HILL LAB (44 555 22) +64 7 858 2000 mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 2

SPv1

Client: 4SIGHT Consulting Limited

Contact: Oliver Bone

C/- 4SIGHT Consulting Limited

PO Box 402053 Tutukaka 0153

2260244 Lab No: **Date Received:** 17-Oct-2019 30-Oct-2019 **Date Reported:**

Quote No: 66824 Order No: AA1146

AA1146 Eastland Port-Dunstan Rd Surface Water **Client Reference:**

Submitted By: Oliver Bone

Sample Type: Aqueous						
Sampl	e Name:	MLYSW Site 1 15-Oct-2019 10:30 am	MLWSW Site 2 15-Oct-2019 10:50 am	MLYSW Site 3 15-Oct-2019 11:05 am		
Lab I	Number:	2260244.1	2260244.2	2260244.3		
Individual Tests						
Volatile Suspended Solids	g/m³	44	4	81	-	-
Total Suspended Solids	g/m³	270	17	440	-	-
Dissolved Copper	g/m³	0.0010	0.0040	0.0012	-	-
Dissolved Lead	g/m³	< 0.00010	< 0.0002	< 0.00010	-	-
Dissolved Zinc	g/m³	0.0014	0.004	0.0013	-	-
Dissolved Inorganic Nitrogen*	g/m³	< 0.011	0.46	< 0.011	-	-
Total Nitrogen	g/m³	0.91	1.17	1.42	-	-
Total Ammoniacal-N	g/m³	< 0.010	0.41	< 0.010	-	-
Nitrate-N + Nitrite-N	g/m³	< 0.002	0.042	< 0.002	-	-
Total Kjeldahl Nitrogen (TKN)	g/m³	0.91	1.13	1.42	-	-
Dissolved Reactive Phosphorus	g/m³	0.039	0.36	0.110	-	-
Carbonaceous Biochemical Oxygen Demand (cBOD ₅)	g O ₂ /m ³	44	2	50	-	-
Total Phenols	g/m³	< 0.02	< 0.02	< 0.02	-	-
Tannin	g/m³	10.3	0.6 #1	12.6	-	-
Absorbance at 440 nm	AU cm ⁻¹	0.057	0.012	0.049	-	-
Transmittance at 440 nm* %T	, 1 cm cell	87.7	97.4	89.3	-	-
Total Petroleum Hydrocarbons in Wat	er					
C7 - C9	g/m³	< 0.06	< 0.06	< 0.06	-	-
C10 - C14	g/m³	< 0.2	< 0.2	< 0.2	-	-
C15 - C36	g/m³	< 0.4	< 0.4	< 0.4	-	-
Total hydrocarbons (C7 - C36)	g/m³	< 0.7	< 0.7	< 0.7	-	-

Analyst's Comments

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Total Petroleum Hydrocarbons in Water	Solvent extraction, GC-FID analysis. Headspace GC-MS analysis for C7-C9 carbon band. In-house based UEPA 8015, 8260 & 5021 / MfE Petroleum Industry Guidelines.	0.06 - 0.7 g/m ³	1-3
Filtration, Glass Fibre	Sample filtration through glass fibre filter.	-	1-3
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-3

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

^{#1} Severe matrix interferences required that a dilution be performed prior to analysis, resulting in a detection limit higher than that normally achieved for the Tannin analysis.

Sample Type: Aqueous Test	Method Description	Default Detection Limit	Sample No
Volatile Suspended Solids	Filtration (GF/C, 1.2 µm). Ashing 550°C, 30 min. Gravimetric. APHA 2540 E (modified) 23 rd ed. 2017.	3 g/m ³	1-3
Total Suspended Solids	Filtration using Whatman 934 AH, Advantec GC-50 or equivalent filters (nominal pore size 1.2 - 1.5µm), gravimetric determination. APHA 2540 D (modified) 23 rd ed. 2017.	3 g/m ³	1-3
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B 23 rd ed. 2017.	-	1-3
Dissolved Copper	Filtered sample, ICP-MS, trace level. APHA 3125 B 23rd ed. 2017.	0.0005 g/m ³	1-3
Dissolved Lead	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.00010 g/m ³	1-3
Dissolved Zinc	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.0010 g/m ³	1-3
Dissolved Inorganic Nitrogen*	Calculation: NH ₄ -N + NO ₃ -N + NO ₂ -N. In-House.	0.010 g/m ³	1-3
Total Nitrogen	Calculation: TKN + Nitrate-N + Nitrite-N. Please note: The Default Detection Limit of 0.05 g/m³ is only attainable when the TKN has been determined using a trace method utilising duplicate analyses. In cases where the Detection Limit for TKN is 0.10 g/m³, the Default Detection Limit for Total Nitrogen will be 0.11 g/m³.	0.05 g/m³	1-3
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ -N = NH ₄ +-N + NH ₃ -N). APHA 4500-NH ₃ H (modified) 23 rd ed. 2017.	0.010 g/m ³	1-3
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ - I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-3
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, phenol/hypochlorite colorimetry. Discrete Analyser. APHA 4500-N _{org} D (modified) 4500 NH ₃ F (modified) 23 rd ed. 2017.	0.10 g/m ³	1-3
Dissolved Reactive Phosphorus	Filtered sample. Molybdenum blue colourimetry. Flow injection analyser. APHA 4500-P G (modified) 23rd ed. 2017.	0.004 g/m ³	1-3
Carbonaceous Biochemical Oxygen Demand (cBOD ₅)	Incubation 5 days, DO meter, nitrification inhibitor added, dilutions, seeded. APHA 5210 B (modified) 23rd ed. 2017.	2 g O ₂ /m³	1-3
Total Phenols	In-line distillation, segmented flow colorimetry. NB: Does not detect 4-methylphenol. APHA 5530 B & D (modified) 23 rd ed. 2017 & Skalar Method I497-001 (modified).	0.02 g/m ³	1-3
Tannin	Colorimetric with Folin phenol reagent, tannic acid used for calibration. APHA 5550 B (modified) 23rd ed. 2017.	0.10 g/m ³	1-3
Absorbance at 440 nm	Filtered sample. Spectrophotometry, 1cm cell. APHA 5910 B 23 rd ed. 2017.	0.002 AU cm ⁻¹	1-3
Transmittance at 440 nm*	Calculation from Absorbance at the specified wavelength.	0.5 %T, 1 cm cell	1-3

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua Private Bag 3020, Rotorua 3046, New Zealand Telephone +64 7 343 5899 Facsimile +64 7 348 0952 Email enquiries@scionresearch.com www.scionresearch.com

Monday, 11 November 2019

4Sight Consulting (on behalf of Eastland Port). Auckland Office.

Attn: Oliver Bone

TRACE RESIN ACID ANALYSIS – MLY GW01, GW02, STD01, SW Site1-3 – 15 October 2019.

CLIENT'S ORDER AA1146 EPL Compliance Programme.

NUMBER:

WORK PERFORMED Murray Robinson & Michael Robertson

BY:

WORK CHECKED BY: Kim McGrouther

APPROVED BY: (SIGN)

DATE OF ISSUE: 11 November 2019

DISTRIBUTION: CLIENT: 1 copy
SCION Files: 1 copy

If this report is to be reproduced in full or in part written permission is required. **SCION's** name may not be used in advertising without consent.

This report has been prepared by or for the CLIENT for its own purposes. No express or implied warranty or representation is given as to the accuracy or validity of any information or opinion contained herein or to its suitability for any particular application. Any person using any information contained in this report with or without the knowledge or consent of NEW ZEALAND FOREST RESEARCH INSTITUTE LIMITED does so at his or her own risk and the NEW ZEALAND FOREST RESEARCH INSTITUTE LIMITED shall not be liable for any damage or loss arising therefrom.

SCION

Private Bag 3020, ROTORUA:

Fax (07) 343 5507 Phone (07) 343-5899 Email: murray.robinson@scionresearch.com

CAUTION

The information contained in this facsimile is confidential and may be legally privileged. If the reader of this message is not the intended recipient, you are hereby notified that any use, dissemination, distribution or reproduction of this message is prohibited. If you have received this message in error, please notify us immediately and return the message to us by mail. Thank you.

DATE SAMPLES RECEIVED 17/10/2019

SAMPLE DESCRIPTION Six water samples in 1L glass bottles (450°C muffled bottles

supplied by Scion) - sent to Scion by Tom Needham

16/10/2019.

SAMPLE IDENTIFICATION MLY GW01 15/10 11:40 1L

Light brown water, reddish-brown layer of sediment.

MLY GW02 15/10 11:50 1L

Clear water, small amount of brown sediment.

MLY STD01 15/10 10:35 1L Brown water, brown sediment.

MLY SW Site 1 15/10 10:30 1L Brown water, brown sediment.

MLY SW Site 2 15/10 10:50 1L Clear water, very little sediment.

MLY SW Site 3 15/10 11:05 1L Brown water, thin layer of sediment.

SAMPLING PROCEDURE

This report relates only to the items tested as received and therefore does not necessarily represent the sample from which it was taken.

DATE OF TESTING 24/10/2019

METHODS

In-house method using unfiltered, pH 9-buffered liquid/liquid extraction with dichloromethane (DCM), followed by gas chromatography - mass spectrometry (GC/MS) analysis.

RESULTS:

RESIN ACIDS (µg/L)

Sample name	MLY GW01 15/10/19	MLY GW02 15/10/19	MLY STD01 15/10/19	MLY SWSite1 15/10/19	MLY SWSite2 15/10/19	MLY SWSite3 15/10/19
Pimaric acid	n.d.	n.d.	73.2	13.4	n.d.	14.7
Sandaracopimaric acid	n.d.	n.d.	3.7	n.d.	n.d.	n.d.
Isopimaric acid	n.d.	n.d.	15.2	1.8	n.d.	n.d.
Palustric acid	n.d.	n.d.	4.8	4.4	n.d.	n.d.
Levopimaric Acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Dehydroabietic acid	n.d.	n.d.	584.9	233.1	n.d.	217.1
Abietic acid	n.d.	n.d.	97.6	24.7	n.d.	19.1
Neoabietic acid	n.d.	n.d.	4.9	1.3	n.d.	n.d.
Pimarenic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Sandaracopimarenic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Isopimarenic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
13-Abietenic acid	n.d.	n.d.	7.6	7.3	n.d.	6.3
Pimaranic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Isopimaranic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Abietanic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Seco-1-dehydroabietic acid	n.d.	n.d.	9.5	2.0	n.d.	n.d.
Seco-2-dehydroabietic acid	n.d.	n.d.	8.3	1.0	n.d.	n.d.
12-Chlorodehydroabietic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
14-Chlorodehydroabietic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
12,14-Dichlorodehydroabietic acid	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
7-Oxodehydroabietic acid	n.d.	n.d.	4.8	1.6	n.d.	1.3
Total Resin Acids	n.d.	n.d.	814.5	290.6	n.d.	258.6

n.d. = not detected, method detection limit is $0.1\mu g/L$ All results presented are from duplicate sample analysis and concentrations are in $\mu g/L$. Compounds are quantified if they have a response 2.5 times higher than the average blank.

Eastland KSIGHT

Surface Water (Fresh) Sampling Form

Job Information		Equipment			
Date: 15-10-19	Time: Arrive: 1010 Depart: 1200	Water quality equipment description:	Calibration Records Filed?	N N	NA
Project Name: EPL Outsourced Compliance Programme	Project Number: AA1146	Interface Probe Number: MER 139	Calibration Records Filed?	3 z	NA A
Site Location: MLY	Operator: 10m, 11bby	Sampling Equipment Type: Grab Sumple only	7/4		
Weather: Consistent rain > clearing	Weather: Consistent rain > clearing Rainfall event start time/date: 14.10.19@ 2000 Event Bainfall Depth: ~ 60 mm	ບ Event Bainfall Depth: ~ 60 ແກ	Number of dry days before sampling: NA	mpling: NA	
Reason for sampling: Standard Compliance	ce Programme (Circle frequency: Monthly/2 Montl	Reason for sampling: Standard Compliance Programme (Circle frequency: Monthly/2 Monthly/Quarterly/6 Monthly) or Additional Monitoring (describe)	describe):		

	Downstream Site 3	Upstream Site 2	Site)	\$700)	GWD2	CWOI	Number Number	
	~	2		0	02	3	Site Lab Sample	-
	HOS	1050	1030	1035	2511	E O	e Sample Time	
	0.6	0.6	a NA	0.6	NA	NA	Approx Depth (m)	etails
							Approx Stream Flow Rate	
13.2 51.3	7.	2	12.9	13.2 59.6 458	113.6 5.41 17.11	15.2 19.5	Temp (°C)	Wa
51.3	2005 P.	82.7	30.3 73)	3.6	14.5	19.5	% %	ter Quali
	isto	3990	13	854	484	830	EC (µS/cm)	Water Quality Parameters
	7.6	8.2	7.2	1.00	カセ	7.4	рН	ers
	2	2	2	Z	NA	NA	Debris Present (Y/N: type)	
	2	Z	Z	2	NA	NA	Foams/Scums (Y/N)	<u>o</u>
	Turbiel	Lightly Turbed	Turbid	Turbid	Clear	Lighly Turbid	Clarity (Clear/Lightly Turbid/Turbid/Very Turbid)	Observations
	~	<	1	, /	NA	W. J	Photos Reference	
· · · · · · · · · · · · · · · · · · ·	2 Cm	20cm	2cm	CM	37cm	65cm	Clarity (cm)	, 4400

		Additional comments: Site 2 & 3 were sampled wrong way wound. Site 2 was
Bones We	TOW.E	2 .
SW.S	3	(L)
purgea	TOFWA	war o
before	directo	sampled
samphi	きなせ	BYOUM
Ė	3	may
	Tow 7	Sound.
	٤	Site
		2 was
	•	ipstram,
		site 3 w
		site 3 was downsteam (steam
	bores were purped before sampling.	Bores were purged before sampling.

	nent used for these samples? N Consistent with Y N COC Filled out?	nent used for these samples? N Consistent with Y N COC Filled out?
N Consistent with COC Filled out?	N Consistent with	N Consistent with
Consistent with	Consistent with	Consistent with
istent with Filled out?	istent with Filled out?	istent with Filled out?
1 10	32	30

Groundwater Well Sampling Form

Job Information	
Date: 15-10-19	Time: Arrive: 1010 Depart: 1200
Project Name: EPL Outsourced Compliance Programme	Project Number: AA1146
Site Location: MLV	Operator: Tom + Libby
Well ID: GWO/	Weather: Consistent rain - clearing

Equipment				
Water quality equipment de		ibration records filed?	Y	N
Interface Probe Number:	Cali	ibration records filed?	Υ	N
Purging Equipment Type? (Please circle)	Bailer Type: Plastic Teflon Pump Type: Peristaltic Subme	ersible Micro-purge Ot	her:	

Casing Diameter	25mm	50mm	50mm	50mm	50mm	100mm	100mm	100mm	Volume of water in a well:
Bore Diameter	(50mm)	100mm	125mm	150mm	200mm	125mm	200mm	250mm	V = π x r2 x h
Conversion Factor (L/m)	0.93	3.73	5.06	6.68	10.8	10.8	14.2	20.2	V = Volume in litres $\pi = 3.142$
Total Well depth (- 9-5) Water L 1-65	=	7-85 ater Column		rsion Facto	or (=) Litres	per 1 Well	Volume	r = radius in m h = Height of water column in m

Beginn	ing Purgi	ng Time:	1020		/ater Qualit Purging Tim			Fill Time:	Discharge Time:
Litres	Time	DO (mg/L)	Cond. (μS/cm)	рН	Redox (mV)	Temp (°C)	DTW (mbTPC)	Comments	
	1020	1.96	830	7.4	<u> </u>	19.5		Great recon	ieru
								Purged prism	
						1		Sampled a	1 1140
10L i	n 90	Secons	5						
Stabilis Criteria		±10%¹	±3% or ±5% if <100*	± 0.1*	± 10mV¹	± 0.1*	turbid / cold		tly cloudy / turbid / very odour / strong odour /
		¹ Based on \	MfE National Pro Vic EPA (Australia) Max flow rate = 0.	669.		•	ng in NZ, 2006	, ,	radings (either 3 min or
		Total Wel	l Volume					Did field paramete	
		Actual amo	ount of water rem	oved prior	to sampling			Was the well o	dry purged? Y (N

Fie	eld Quality	Control	Checks		
Was pre-cleaning sampling equipment used for these samples?	0	N	Consistent with COC form?	(1)	N
Was pre-cleaning sampling equipment properly protected from contamination?	(1)	N	COC Filled out?	(9)	N

Thedler

Groundwater Well Sampling Form

Job Information	
Date: 15-10-19	Time: Arrive: 1010 Depart: 1200
Project Name: EPL Outsourced Compliance Programme	Project Number: AA1146
Site Location: Mとソ	Operator: Tom + Libby
Well ID: GW02	Weather: Consistent rain -> clearing
	· · · · · · · · · · · · · · · · · · ·

Water quality equipment de	scription:	Calibration records filed?	Υ	N
Interface Probe Number:		Calibration records filed?	Υ	N
Purging Equipment Type? (Please circle)	Bailer Type: Plastic Teflon Pump Type: Peri	staltic Submersible Micro-purge Of	ther:	

Casing Diameter No casing	25mm	50mm	50mm	50mm	50mm	100mm	100mm	100mm	Volume of water in a well:
Bore Diameter	(50mm)	100mm	125mm	150mm	200mm	125mm	200mm	250mm	V = π x r2 x h
Conversion	0.93	3.73	5.06	6.68	10.8	10.8	14.2	20.2	V = Volume in litres
Factor (L/m)									$\pi = 3.142$
Total Well depth (-) Water L 		ter Column . 49		•		,		r = radius in m h = Height of water
		Wa	ater Columr	ı (x) Conve	rsion Facto	r (=) Litres	per 1 Well	Volume	column in m
			1	n x		=		1	

Beginni	ing Purgi	ng Time: 1	0.25	7	/ater Quality Purging Time			Fill Time:	Discharge Time:
Litres	Time	DO (mg/L)	Cond. (μS/cm)	рН	Redox (mV)	Temp (°C)	DTW (mbTPC)	Comments	
	1025	1.49	984	74		14.5	<u> </u>	Purged prior	to sampling,
			:					pour recore	
***************************************								Sampled as	1150
Stabilis Criteria		±10%¹	±3% or ±5% if <100*	± 0.1*	± 10mV¹	± 0.1*	turbid / cole		ntly cloudy / turbid / very t odour / strong odour / lvent/organic)
		¹ Based on \	MfE National Pro Vic EPA (Australia	669.		·	ng in NZ, 2006	,	
		Low Flow: I 0.5L apart)	Max flow rate = 0	.5 L/min M	ax drawdown	= 0.2 cm -	- Well stable v	when 3 consecutive re	eadings (either 3 min or
		Total Wel	l Volume			***************************************		Did field paramete	ers stabilise? (Y) N
		Actual amo	unt of water rem	oved prior	to sampling			Was the well	dry purged? (Y) N

Fie	eld Quality	Control	Checks		
Was pre-cleaning sampling equipment used for these samples?	(1)	N	Consistent with COC form?	V	N
Was pre-cleaning sampling equipment properly protected from contamination?	(9)	N	COC Filled out?	Y	N

Jokeellu

Daily Summary Sheet

Time	Comments
1010	Arrived at MLY
1020	Purged bore GNUI (was not dry purged because of good recom
1025	Purged bore GNO2
1030	MLYSW Site 1: High flow of turbid water running off. No Bams or scums.
1035	MLYSTD 01: Water level quite high, water also turbed. No bams or scums.
1050	MLYSW Site 2 (upstreams): Lightly turbed with no toams, scums.
1105	MLYSW Site 3 (Downstrein): Turbid with no foams, scums. Note: Streem was flowing into the Waipava River
1140	GWOI : Lightly turbed water with good recovery:
1150	GWO2: Clear water with poor recovery (ditch next to boxe full of water)
1200	Left MLY
	,

Field D.O. Probe Calibration

		Τ	·		г	,	Τ		T	T	1	т	Т	T	T	 	Ι	Ι	
Date	pollolo	N .	26/9/19		2/10/19	-	9/10/19		16/16/19	- SPECKAT F. L.	THE STATE OF THE S		THE SALES				The service of the se		
Probe	821	139	138	139	138	139	138	139	138	139									
Wate Check 100%	0.50)	101-1	38.5	2.4	99.3	98.7	99.6	99.2	98.8	990					•				
Water - Saturated Air (100%) k Meter C (°C)	1030013	20.3	20.5	23.5	24.2	25-1	22.4	23.6	19.2	19.7									
100%) Cal OK?		<		V	V	V		1	V	V									
Air-S: Temp	17.4	がこ	S. C. T. C.	20.2	20.9	20.9	21.4	21.5	20.0	20.0					-				
Air - Saturated Water (100%) p		8-40]	22 Fac		99.1	99.2	100.3	101.0	101.5	101.9									
DO (g/m³)	9.69	10.05	279 402	9.05	8.89	8.87	8.87	8.92	9.23	9.26									
Accept if ±0.1 of Meter D.O. Analytical DO Accept (g/m³) Initials	9.70	(0.05	9.05	9.06	8.85	8.86	8.85	8.91	9.23	9-21									The Advance of the Control of the Co
of Meter D.O. Accept Initials			N. A	V -N	NE. /	く ラン	V TN	1 72	V TN	1 TN									